(2pkt) Matura z matematyki (poziom podstawowy) – Maj 2021 – CKE Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że suma liczb wyrzuconych oczek jest równa \(4\) lub \(5\), lub \(6\).
hMkw0. Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej $f$. Wierzchołkiem tej paraboli jest punkt $W=(2,-4)$. Liczby $0$ i $4 $ to miejsca zerowe funkcji $f$.Zbiorem wartości funkcji $f$ jest przedział A. $(-\infty,0 \rangle$B. $\left\langle 0,4\right\rangle$C. $\langle-4,+\infty)$D. $\langle4,+\infty)$ Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej $f$. Wierzchołkiem tej paraboli jest punkt $W=(2,-4)$. Liczby $0$ i $4 $ to miejsca zerowe funkcji $f$.Największa wartość funkcji $f$ w przedziale $\left\langle 1,4\right\rangle$ jest równaA. $-3$B. $-4$C. $4$D. $0$ Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej $f$. Wierzchołkiem tej paraboli jest punkt $W=(2,-4)$. Liczby $0$ i $4 $ to miejsca zerowe funkcji $f$.Osią symetrii wykresu funkcji $f$ jest prosta o równaniuA. $y=-4$B. $x=-4$C. $y=2$D. $x=2$ W ciągu arytmetycznym $(a_n)$, określonym dla $n\geqslant1$, dane są dwa wyrazy: $a_1=7$ i $a_8=-49$. Suma ośmiu początkowych wyrazów tego ciągu jest równaA. $-168$B. $-189$C. $-21$D. $-42$ Dany jest ciąg geometryczny $(a_n)$, określony dla $n\geqslant1$. Wszystkie wyrazy tego ciągu są dodatnie i spełniony jest warunek $\frac{a_5}{a_3}=\frac{1}{9}$. Iloraz tego ciągu jest równyA. $\frac{1}{3}$B. $\frac{1}{\sqrt{3}}$C. $3$D. $\sqrt{3}$ Sinus kąta ostrego $\alpha$ jest równy $\frac{4}{5}$. Wtedy A. $\cos\alpha=\frac{5}{4}$B. $\cos\alpha=\frac{1}{5}$C. $\cos\alpha=\frac{9}{25}$D. $\cos\alpha=\frac{3}{5}$ Punkty $D$ i $E$ leżą na okręgu opisanym na trójkącie równobocznym $ABC$ (zobacz rysunek). Odcinek $CD$ jest średnicą tego okręgu. Kąt wpisany $DEB$ ma miarę $\alpha$.ZatemA. $\alpha=30^\circ$B. $\alpha45^\circ$D. $\alpha=45^\circ$
ŁódźWiadomości Łódź, Wydarzenia ŁódźMatura 2009:… Marta Roszkowska 13 maja 2009, 15:01 Zebraliśmy dla was w jednym miejscu wszystkie informacje, które mogą być przydatne w zdaniu matury z matematyki 2009 roku, zarówno na poziomie podstawowym i rozszerzonym. Jeżeli szukasz arkuszy egzaminacyjnych pytań, odpowiedzi i rozwiązań z matur i matur próbnych, to jest idealne miejsce dla Ciebie. Matematyka!FACEBOOKDołącz do nas na Facebooku!Publikujemy najciekawsze artykuły, wydarzenia i konkursy. Jesteśmy tam gdzie nasi czytelnicy!Polub nas na Facebooku!TWITTERKONTAKTKontakt z redakcjąByłeś świadkiem ważnego zdarzenia? Widziałeś coś interesującego? Zrobiłeś ciekawe zdjęcie lub wideo?Napisz do nas!Polecane ofertyMateriały promocyjne partnera Powracamy po swoich - wręczenie not identyfikacyjnych w łodzimatura 2009arkusze maturalnematura matematyka odpowiedziłódź Komentarze Komentowanie artykułów jest możliwe wyłącznie dla zalogowanych Użytkowników. Cenimy wolność słowa i nieskrępowane dyskusje, ale serdecznie prosimy o przestrzeganie kultury osobistej, dobrych obyczajów i reguł prawa. Wszelkie wpisy, które nie są zgodne ze standardami, proszę zgłaszać do moderacji. Zaloguj się lub załóż kontoNie hejtuj, pisz kulturalne i zgodne z prawem komentarze! Jeśli widzisz niestosowny wpis - kliknij „zgłoś nadużycie”.Podaj powód zgłoszeniaSpamWulgaryzmyRażąca zawartośćPropagowanie nienawiściFałszywa informacjaNieautoryzowana reklamaInny powód Nikt jeszcze nie skomentował tego artykułu.
Zadanie 1. (5 pkt) a) wiersz x: -3 3 3/2 wiersz f(x): -9 1 0 c) {-1,0,1,2,3,4} Zadanie 2. (3 pkt) m = 80, n = 60 Zadanie 3. (5 pkt) a) x należy (-nieskończoność, - 5/2) suma (1, + nieskończoność) b) Zbiorem wartości funkcji g jest (- nieskończoność, 8> c) b = 12, c = -10 Zadanie 4. (3 pkt) x = 3 do 54 Zadanie 5. (5 pkt) a) a = -3, b = -1, c = 0 b) W(x) = x(x-1)(x+4) Zadanie 6. (5 pkt) b) Wartość tego wyrażenia to 1/3. Zadanie 7. (6 pkt) a) a1 = -11, r = 2 b) ciąg jest geometryczny c) n = 6 Zadanie 8. (4 pkt) Obwód trapezu: 108 Zadanie 9. (4 pkt) A = (4, 2), długość przyprostokątnej to 2 pierwiastki z 5 Zadanie 10. (5 pkt) a) średnia arytmetyczna liczby błędów: 2 b) prawdopodobieństwo: 63/145 Zadanie 11. (5 pkt) a) 36 pierwiastków z 3 b) Objętość walca jest mniejsza niż 18 pierwiastków z 3